Abstract

A fine wire probe was used to make quantitative measurements of the free surface profile and surface fluctuations around the hydraulic jump formed by a normally impinging free liquid jet. Representative magnitudes of both radial and axial fluctuations were presented for two nozzle sizes and several jet Reynolds numbers and subcritical flow depths. The results were compared to previous measurements of the supercritical flow depth and to theoretical predictions of the circular hydraulic jump size. The agreement appeared reasonable for the supercritical flow depth while the analytical expressions predicted a shorter hydraulic jump than that found by the measurements for the same supercritical flow conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.