Abstract

This paper investigates the effect of resistive forces that arise in compressed fluidic artificial muscles (FAMs) within a variable recruitment bundle. Much like our skeletal muscle organs that selectively recruit different number of motor fibers depending on the load demand, a variable recruitment FAM bundle adaptively activates the minimum number of motor units (MUs) to increase its overall efficiency. A variable recruitment bundle may operate in different recruitment states (RSs) during which only a subset of the FAMs within a bundle are activated. In such cases, a difference in strain occurs between active FAMs and inactive/low-pressure FAMs. This strain difference results in the compression of inactive/lowpressure FAMs causing them to exert a resistive force opposing the force output of active FAMs. This paper presents experimental measurements for a FAM for both tensile and compressive regions. The data is used to simulate the overall force-strain space of a variable recruitment bundle for when resistive force effects are neglected and when they are included. Counterintuitively, an initial decrease in bundle free strain is observed when a transition to a higher RS is made due to the presence of resistive forces. We call this phenomenon the free strain gradient reversal of a variable recruitment bundle. The paper is concluded with a discussion of the implications of this phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call