Abstract

In this paper, we first construct the free Rota-Baxter family algebra generated by some set X in terms of typed angularly X-decorated planar rooted trees. As an application, we obtain a new construction of the free Rota-Baxter algebra only in terms of angularly decorated planar rooted trees (not forests), which is quite different from the known construction via angularly decorated planar rooted forests by K. Ebrahimi-Fard and L. Guo. We then embed the free dendriform (resp. tridendriform) family algebra into the free Rota-Baxter family algebra of weight zero (resp. one). Finally, we prove that the free Rota-Baxter family algebra is the universal enveloping algebra of the free (tri)dendriform family algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.