Abstract

A sparse generic matrix is a matrix whose entries are distinct variables and zeros. Such matrices were studied by Giusti and Merle who computed some invariants of their ideals of maximal minors. In this paper we extend these results by computing a minimal free resolution for all such sparse determinantal ideals. We do so by introducing a technique for pruning minimal free resolutions when a subset of the variables is set to zero. Our technique correctly computes a minimal free resolution in two cases of interest: resolutions of monomial ideals, and ideals resolved by the Eagon-Northcott Complex. As a consequence we can show that sparse determinantal ideals have a linear resolution over the integers, and that the projective dimension depends only on the number of columns of the matrix which are identically zero. Finally, we show that all such ideals have the property that regardless of the term order chosen, the Betti numbers of the ideal and its initial ideal are the same. In particular the nonzero generators of these ideals form a universal Grobner basis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.