Abstract

Free radical formation evoked by proinflammatory cytokines has been suggested to be involved in the destruction of beta-cells in the course of type 1 diabetes development. However, there is no direct evidence to support this hypothesis. In this study, we used electron paramagnetic resonance spectroscopy in conjunction with spin-trapping methodology to directly determine whether cytokines give rise to free radical formation in the islets. Our results demonstrate that direct, in vivo administration of tumor necrosis factor-alpha (1,000 units), interleukin-1beta (1,000 units), and interferon-gamma (2,000 units) into the rat pancreas through a bile duct cannula leads to the formation of lipid-derived free radicals in this tissue. These free radicals most likely are generated by the beta-cells because previous depletion of these cells by streptozotocin abolished the cytokine-induced free radical formation. Furthermore, macrophage depletion was found to decrease the production of free radicals. Inhibition of the enzyme inducible cyclooxygenase (COX-2) and the transcription factor nuclear factor-kappaB (NF-kappaB) significantly diminished the free radicals' signal intensity, implicating these factors in the formation of free radicals. We have also demonstrated that cytokine treatment leads to the activation of NF-kappaB in the pancreatic islets of the rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call