Abstract

Increased oxidative stress in adipose tissue emerges as an inducer of obesity-linked insulin resistance. Here we tested whether free-radical derived oxysterols are formed by, and accumulate in, human adipocytes. Moreover, we asked whether increased accumulation of oxysterols characterizes the adipose cells of obese patients with type 2 diabetes (T2D) (OBT2D) compared with lean, nondiabetic controls (CTRLs). Finally, we studied the effects of the free radical-derived oxysterols on adipogenic differentiation of adipose-derived stem cells (ASCs). Adipocytes and ASCs were isolated from sc abdominal adipose tissue biopsy in four OBT2D and four CTRL subjects. Oxysterols in adipocytes were detected by gas chromatography/mass spectrometry. The cellular and molecular effects of oxysterols were then evaluated on primary cultures of ASCs focusing on cell viability, adipogenic differentiation, and "canonical" WNT and MAPK signaling pathways. 7-ketocholesterol (7κ-C) and 7β-hydroxycholesterol were unambiguously detected in adipocytes, which showed higher oxysterol accumulation (P < .01) in OBT2D, as compared with CTRL individuals. Notably, the accumulation of oxysterols in adipocytes was predicted by the adipose cell size of the donor (R2 = 0.582; P < .01). Challenging ASCs with free radical-derived type I (7κ-C) and type II (5,6-Secosterol) oxysterols led to a time- and concentration-dependent decrease of cell viability. Meaningfully, at a non-toxic concentration (1μM), these bioactive lipids hampered adipogenic differentiation of ASCs by sequential activation of WNT/β-catenin, p38-MAPK, ERK1/2, and JNK signaling pathways. Free radical-derived oxysterols accumulate in the "diabetic" fat and may act as novel adipokines modulating the adipogenic potential of undifferentiated adipose precursor cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.