Abstract
We study analogues of classical Hilbert transforms as fourier multipliers on free groups. We prove their complete boundedness on non commutative $L^p$ spaces associated with the free group von Neumann algebras for all $1<p<\infty$. This implies that the decomposition of the free group $\F_\infty$ into reduced words starting with distinct free generators is completely unconditional in $L^p$. We study the case of Voiculescu's amalgamated free products of von Neumann algebras as well. As by-products, we obtain a positive answer to a compactness-problem posed by Ozawa, a length independent estimate for Junge-Parcet-Xu's free Rosenthal inequality, a Littlewood-Paley-Stein type inequality for geodesic paths of free groups, and a length reduction formula for $L^p$-norms of free group von Neumann algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.