Abstract

The absorption coefficients for the free-free transitions in collisions between slow electrons and neutral oxygen atoms have been calculated for wavelengths in the range of 1 to 30 [mu]m and temperatures between 5000 and 50 000 K. The wave functions of the unbound electron are the solutions of a one-electron Schroedinger-like continuum equation that includes the Coulomb, exchange, and polarization interactions with the oxygen atom. The polarization potential is determined by a first-principles calculation based on the method of polarized orbitals. Our absorption coefficients are in good agreement with those of John and Williams [J. Quant. Spectrosc. Radiat. Transfer 17, 169 (1977)], but are much smaller than the experimental data of Taylor and Caledonia [J. Quant. Spectrosc. Radiat. Transfer 9, 681 (1969)] and of Kung and Chang [J. Quant. Spectrosc. Radiat. Transfer 16, 579 (1976)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.