Abstract

Recent opacity measurements have inspired a close study of the two-photon contributions to the opacity of hot plasmas. The absorption and emission of radiation is controlled by dipole matrix-elements of electrons in an atom or ion. This paper describes two independent methods to calculate matrix-elements needed for the two-photon opacity and tests the results by the f-sum rule. The usual f-sum rule is extended to a matrix f-sum that offers a rigorous test for bound-bound, bound-free and free-free transitions. An additional higher-order sum-rule for the two-photon transition amplitudes is described. We obtain a simple parametric representation of a key plasma density effect on the matrix-elements.The perturbation theory calculation of two-photon cross-sections is compared to an independent method based on the solution of the time-dependent Schroedinger equation for an atom or ion in a high-frequency electromagnetic field. This is described as a high frequency Stark effect or AC Stark effect. Two-photon cross sections calculated with the AC Stark code agree with perturbation theory to within about 5%. In addition to this cross check, the AC Stark code is well suited to evaluating important questions such as the variation of two-photon opacity for different elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call