Abstract

A novel computational protocol based on free energy perturbation (FEP) simulations on both the free enzyme and transition state structures has been developed and tested to predict the mutation-caused shift of the free energy change from the free enzyme to the rate-determining transition state for human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (-)-cocaine. The calculated shift, denoted by DeltaDeltaG(1 --> 2), of such kind of free energy change determines the catalytic efficiency (kcat/KM) change caused by the simulated mutation transforming enzyme 1 to enzyme 2. By using the FEP-based computational protocol, the DeltaDeltaG(1 --> 2) values for the mutations A328W/Y332A --> A328W/Y332G and A328W/Y332G --> A328W/Y332G/A199S were calculated to be -0.22 and -1.94 kcal/mol, respectively. The calculated DeltaDeltaG(1 --> 2) values predict that the change from the A328W/Y332A mutant to the A328W/Y332G mutant should slightly improve the catalytic efficiency and that the change from the A328W/Y332G mutant to the A328W/Y332G/A199S mutant should significantly improve the catalytic efficiency of the enzyme for the (-)-cocaine hydrolysis. The predicted catalytic efficiency increases are supported by the experimental data showing that kcat/KM = 8.5 x 10(6), 1.4 x 10(7), and 7.2 x 10(7) min(-1) M(-1) for the A328W/Y332A, A328W/Y332G, and A328W/Y332G/A199S mutants, respectively. The qualitative agreement between the computational and experimental data suggests that the FEP simulations may provide a promising protocol for rational design of high-activity mutants of an enzyme. The general computational strategy of the FEP simulation on a transition state can be used to study the effects of a mutation on the activation free energy for any enzymatic reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.