Abstract
We describe a simple Monte Carlo simulation method to calculate the free-energy cost of localizing a single monomer of a polymer confined to a cavity. The localization position is chosen to be on the inside surface of the confining cavity. The method is applied to a freely jointed hard-sphere polymer chain confined to cavities of spherical and cubic geometries. In the latter case, we consider localization at a corner and at the center of a face of the confining cube. We consider cases of end-monomer localization both with and without tethering of the other end monomer to a point on the surface. We also examine localization of monomers at arbitrary positions along the contour of the polymer. We characterize the dependence of the free energy on the cavity size and shape, the localization position, and the polymer length. The quantitative trends can be understood using standard scaling arguments and use of a simple theoretical model. The results are relevant to those theories of polymer translocation that focus on the importance of the free-energy barrier as the translocation process requires an initial localization of a monomer to the position of a nanopore.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.