Abstract

The optimum size of the cavity accommodating a solute in the reaction field theory of solvation is considered by empirical calibration of the results of electronic structure calculations against experiment. To isolate the long range electrostatic free energy contributions treated by reaction field theory from the many other short range contributions not explicitly considered, computational results are compared to experimental determinations of conformational free energy differences in polar solutes having two or more stable or metastable isomers. When the cavity shape is defined by a solute electronic isodensity contour, it is found that the best overall agreement with experiment is obtained with a cavity size corresponding to the 0.001 a.u. contour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.