Abstract
The lipid matrix, or the lipid bilayer, of cell membranes is a natural binding site for amphipathic molecules, including antimicrobial peptides, pore-forming proteins, and many drugs. The unique property of pore-forming antimicrobial peptides is that they exhibit a threshold concentration (called the lethal concentration or the minimum inhibitory concentration) for activity, below which no effect is seen. Without this property, antimicrobial peptides would not be effective self-defense weapons, because they would have harmed all cells at any concentration. The question is what gives rise to this unique property? This study provides a free energy description for the origin of a threshold concentration. The same free energy applied differently also explains the binding of drugs that shows no threshold concentrations. The idea is compared with theories of micellar solutions that require a large oligomer size (n ⪞ 15) to achieve a threshold concentration. The elasticity of lipid bilayers makes the phenomena in membranes different. The majority of antimicrobial peptides have a large negative binding energy to the bilayer interface, but the binding causes an expansion in the membrane area, or equivalently a thinning in the membrane thickness. This elastic energy of membrane thinning elevates the energy level of interfacial binding with the peptide concentration, hence gives rise to a threshold concentration for forming pores containing as few as four peptides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.