Abstract
Motivated by the stochastic quantization approach to large N matrix models, we study solutions to free stochastic differential equations dX t=dS t− 1 2 f(X t) dt where S t is a free brownian motion. We show existence, uniqueness and Markov property of solutions. We define a relative free entropy as well as a relative free Fisher information, and show that these quantities behave as in the classical case. Finally we show that, in contrast with classical diffusions, in general the asymptotic distribution of the free diffusion does not converge, as t→∞, towards the master field (i.e., the Gibbs state).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincare / Probabilites et statistiques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.