Abstract

We consider the central limit theorem for stable laws in the case of the standardized sum of independent and identically distributed random variables with regular probability density function. By showing decay of different entropy functionals along the sequence we prove convergence with explicit rate in various norms to a L\'evy centered density of parameter $\lambda >1$ . This introduces a new information-theoretic approach to the central limit theorem for stable laws, in which the main argument is shown to be the relative fractional Fisher information, recently introduced by the same author (cf. arXiv 1504.07057). In particular, it is proven that, with respect to the relative fractional Fisher information, the L\'evy density satisfies an analogous of the logarithmic Sobolev inequality, which allows to pass from the monotonicity and decay to zero of the relative fractional Fisher information in the standardized sum to the decay to zero in relative entropy with an explicit decay rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.