Abstract

This work studies the free convection heat transfer over a truncated cone embedded in a porous medium saturated by a non-Newtonian power-law nanofluid with constant wall temperature and constant wall nanoparticle volume fraction. The effects of Brownian motion and thermophoresis are incorporated into the model for nanofluids. A coordinate transformation is performed, and the obtained nonsimilar equations are solved by the cubic spline collocation method. The effects of the power-law index, Brownian motion parameter, thermophoresis parameter and buoyancy ratio on the temperature, nanoparticle volume fraction and velocity profiles are discussed. The reduced Nusselt numbers are plotted as functions of the power-law index, thermophoresis parameter, Brownian parameter, Lewis number, and buoyancy ratio. Results show that increasing the thermophoresis parameter or the Brownian parameter tends to decrease the reduced Nusselt number. Moreover, the reduced Nusselt number increases as the power-law index is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.