Abstract

This work studies the free convection boundary layer flow over a horizontal cylinder of elliptic cross section in porous media saturated by a nanofluid with constant wall temperature and constant wall nanoparticle volume fraction. The effects of Brownian motion and thermophoresis are incorporated into the model for nanofluids. A coordinate transformation is performed, and the obtained nonsimilar governing equations are then solved by the cubic spline collocation method. The effects of the Brownian motion parameter and thermophoresis parameter on the profiles of the temperature, nanoparticle volume fraction and velocity profiles are presented. The local Nusselt number is presented as a function of the thermophoresis parameter, Brownian parameter, Lewis number and the aspect ratio when the major axis of the elliptical cylinder is vertical (slender orientation) and horizontal (blunt orientation). Results show that the local Nusselt number is increased as the thermophoresis parameter or the Brownian parameter is decreased. The local Nusselt number increases as the buoyancy ratio or the Lewis number is decreased. Moreover, the local Nusselt number of the elliptical cylinder with slender orientation is higher than those of the elliptical cylinder with blunt orientation over the lower half cylinder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.