Abstract

In indirect band gap semiconductors, for example, in silicon, the free carrier recombination lifetime is determined by recombination through deep level centers and inversely proportional to their concentration. This parameter is of the utmost importance for characterizing the quality of the material. Contactless methods of free carrier recombination lifetime measurements by protoconductivity decay analysis are most widely used. The measurement results are largely affected by surface recombination. The calculation of the lifetime in the bulk of a sample from the characteristic time of photoconductivity decay remains relevant since there is no ambiguous analytical solution of the continuity equation for this case. In this paper, an analysis of the relaxation of photoconductivity in single−crystal silicon wafers with non−passivated surfaces was carried out with numerical methods. The applicability of the well–known formulas for estimating the contribution of surface recombination to the effective photoconductivity decay time was discussed. We show that the time in which the «fast» exponents disappear depends on the relative thickness of the sample. It is only this part of the relaxation curve that the effective decay time is determined by the maximum value of the surface component of the relaxation time and is described by the well−known formulas. The saturation of the effective relaxation time at the point when the signal intensity reaches 45 % of the peak one (the onset point of effective decay time counting pursuant to the SEMI MF 1535 standard recommendation) only occurs in samples with thicknesses less than 3—5 diffusion lengths. For thick samples the contribution of the «fast» exponentials to the effective photoconductivity relaxation time is observed up to 5 % of the peak signal (i.e., until the noise level of the measured signal is reached). Use of the recommended formulas, including for the «infinite recombination rate» case at which the maximum surface lifetime is d2/π2D, leads to a sufficiently large (up to 20 %) error in free carrier recombination lifetime calculation.

Highlights

  • In indirect band gap semiconductors, for example, in silicon, the free carrier recombination lifetime is determined by recombination through deep level centers and inversely proportional to their concentration

  • This parameter is of the utmost importance for characterizing the quality of the material

  • The measurement results are largely affected by surface recombination

Read more

Summary

PHYSICAL CHARACTERISTICS AND THEIR STUDY

В непрямозонных полупроводниках, в частности в кремнии, время жизни неравновесных носителей заряда определяется рекомбинацией через примесные центры, и оно обратно пропорционально концентрации центров, что делает этот параметр важнейшим для определения качества материала. Обсуждена применимость известных формул для оценки вклада поверхностной рекомбинации в эффективное время релаксации фотопроводимости. Только на этом участке релаксационной кривой эффективное время спада определяется максимальным значением поверхностной компоненты времени релаксации и описывается известными формулами. Эффективное время релаксации выходит на насыщение к моменту, когда интенсивность сигнала достигает 45 % от максимального значения (начало отсчета эффективного времени спада по рекомендации стандарта SEMI MF 1535), только для образцов толщиной до 3—5 диффузионных длин. Концентрации такого порядка практически невозможно измерить, при этом такие значения τ легко определить по кривой спада фотопроводимости (ФП) [2,3,4,5]. Рассчитаны поправки, которые необходимо учитывать при расчетах объемного времени жизни на образцах больших толщин по формулам, приведенным в стандарте SEMI [6]

Уравнение непрерывности для описания спада фотопроводимости
Если аналитические выражения для амплитуд
Результаты расчетов кривой спада фотопроводимости
Экспериментальная проверка аппроксимационных формул
Findings
Библиографический список
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.