Abstract
To investigate the efficacy of a novel respiratory motion scheme, where only the center of k-space is gated using respiratory navigators, versus a fully respiratory-gated acquisition for three-dimensional flow imaging. Three-dimensional flow images were acquired axially using a gradient echo sequence in a volume, covering the ascending and descending aorta, and the pulmonary artery bifurcation in 12 healthy subjects (33.2 ± 15.8 years; five men). For respiratory motion compensation, two gating and tracking strategies were used with a 7-mm gating window: (1) All of k-space acquired within the gating window (fully gated) and (2) central k-space acquired within the gating window, and the remainder of k-space acquired without any gating (center gated). Each scan was repeated twice. Stroke volume, mean flow, peak velocity, and signal-to-noise-ratio measurements were performed both on the ascending and on the descending aorta for all acquisitions, which were compared using a linear mixed-effects model and Bland-Altman analysis. There were no statistical differences between the fully gated and the center-gated strategies for the quantification of stroke volume, peak velocity, and mean flow, as well as the signal-to-noise-ratio measurements. Furthermore, the proposed center-gated strategy had significantly shorter acquisition time compared to the fully gated strategy (13:19 ± 3:02 vs. 19:35 ± 5:02, P < 0.001). The proposed novel center-gated strategy for three-dimensional flow MRI allows for markedly shorter acquisition time without any systematic variation in quantitative flow measurements in this small group of healthy volunteers.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have