Abstract

AbstractLet G be a finite group acting freely on a finitistic space X having cohomology type (0, b) (for example, $\mathbb S$n × $\mathbb S$2n is a space of type (0, 1) and the one-point union $\mathbb S$n ∨ $\mathbb S$2n ∨ $\mathbb S$3n is a space of type (0, 0)). It is known that a finite group G that contains ℤp ⊕ ℤp ⊕ ℤp, p a prime, cannot act freely on $\mathbb S$n × $\mathbb S$2n. In this paper, we show that if a finite group G acts freely on a space of type (0, 1), where n is odd, then G cannot contain ℤp ⊕ ℤp, p an odd prime. For spaces of cohomology type (0, 0), we show that every p-subgroup of G is either cyclic or a generalized quaternion group. Moreover, for n even, it is shown that ℤ2 is the only group that can act freely on X.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.