Abstract
In this paper we find conditions on boundary value problems for elliptic differential-operator equations of the 4-th order in an interval to be fredholm. Apparently, this is the first publication for elliptic differential-operator equations of the 4-th order, when the principal part of the equation has the form u′‴n(t) + Au″(t) + Bu(t), where AB-1/2 is a bounded operator and is not compact. As an application we find some algebraic conditions on boundary value problems for elliptic partial equations of the 4-th order in cylindrical domains to be fredholm. Note that a new method has actually been suggested here for investigation of boundary value problems for elliptic partial equations of the 4-th order.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have