Abstract

The experimental characterisation of externally bonded composite materials as strengthening solutions for masonry structures, such as basalt textile reinforced mortar (BTRM) or fiber reinforced concrete (FRC), has been receiving increasing attention due to their outstanding mechanical performance. Several studies have been demonstrated the efficiency of this retrofitting solution for increasing the mechanical strength and the displacement capacity of masonry material.In this paper the state-of-art of the most relevant achievements in the experimental investigations and numerical analysis of retrofitted masonry wall have been critically reviewed. Firstly, a detailed collection of several experimental tests using different textile reinforced mortar and/or fiber reinforced mortar has been conducted. Special focus has been given to the test set-up and load configuration type adopted for experiments. Subsequently, several modelling techniques have been treated in order to detect the best approach simulating the interaction between reinforcement system and masonry ranging from macro and micro modelling, concentrated and diffused plasticity model and diverse constitutive laws.Finally, an overview of some original experimental outcomes from laboratory tests is presented. This results will play a major role in for the validation of the numerical models for the prediction of the shear strength and the ductile behavior of reinforced masonry that will be developed in a further step of this research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.