Abstract
An intense neutron source capable of generating the characteristic flux of a fusion reactor (1-4 MW/m2) is an essential element for adequate reactor materials assessment. Based on recent experimental results involving the magneto-kinetic compression of the Field Reversed Configuration (FRC), it is believed that such a fusion based neutron source can be rapidly developed at low cost. The ability to provide a fusion plasma with the necessary radiation intensity is afforded by the considerable increase in fusion neutron yield that occurs concurrently with the large reduction in reacting plasma volume from the straightforward magnetic flux compression of an FRC plasmoid. Pulsed formation and flux compression of FRCs in a prototype device operating at 4 Hz would yield a neutron power fluence at the wall of 1 MW/m2 from a fusion plasma volume of a half liter. This is roughly a factor 106 smaller than a reactor-scale fusion plasma such as ITER, thereby dramatically reducing the cost and time for the evaluation of materials for fusion application. The required magnetic compression field and energy per pulse is less than 16 T and 100 kJ respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.