Abstract

In this work the Coherent Structure Method (CSM) is used for the simulation of the sub-grid scale (SGS) stress tensor for large eddy simulation of isothermal and reacting turbulent flows. The CSM framework modifies the Smagorinsky coefficient Cs as a function of local flow conditions. It reduces its value where a large coherence of the velocity flow field is detected. In this way the modelled dissipation is reduced and RMS values of velocity, temperature and main species' fluctuations is better reproduced when compared to standard Smagorinsky framework, where Cs is kept constant on a predefined value. Validation is performed by comparing simulation results with available experimental results of an unconfined swirling premixed natural gas/air flame performed by Schneider et al. in 2005. The simulated flame is the 30 kW lean-premixed PSF-30 flame and according to the authors, this flame contains important characteristics of the industrial flames.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.