Abstract
How do groups of individuals achieve consensus in movement decisions? Do individuals follow their friends, the one predetermined leader, or whomever just happens to be nearby? To address these questions computationally, we formalize C oordination S trategy I nference P roblem . In this setting, a group of multiple individuals moves in a coordinated manner toward a target path. Each individual uses a specific strategy to follow others (e.g., nearest neighbors, pre-defined leaders, and preferred friends). Given a set of time series that includes coordinated movement and a set of candidate strategies as inputs, we provide the first methodology (to the best of our knowledge) to infer whether each individual uses local-agreement system or dictatorship-like strategy to achieve movement coordination at the group level. We evaluate and demonstrate the performance of the proposed framework by predicting directions of movement of an individual in a group in both simulated datasets as well as in two real-world datasets: a school of fish and a troop of baboons. Moreover, since there is no prior methodology for inferring individual-level strategies, we compare our framework with the state-of-the-art approach for the task of classification of group-level-coordination models. Results show that our approach is highly accurate in inferring correct strategies in simulated datasets even in complicated mixed strategy settings, which no existing method can infer. In the task of classification of group-level-coordination models, our framework performs better than the state-of-the-art approach in all datasets. Animal data experiments show that fish, as expected, follow their neighbors, while baboons have a preference to follow specific individuals. Our methodology generalizes to arbitrary time series data of real numbers, beyond movement data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.