Abstract

We are witnessing an increasing usage of location data by a variety of applications. Consequently, information systems are required to deal with large datasets containing raw data to build high level abstractions. Semantic Web technologies offer powerful representation tools for pervasive applications. The convergence of location-based services and Semantic Web standards allows an easier interlinking and annotation of trajectories. However, due to the wide range of requirements on modeling mobile object trajectories, it is important to define a high-level data model for representing trajectory episodes and contextual elements with multiple levels of granularity and different options to represent spatial and temporal extents, as well as to express quantitative and qualitative semantic descriptions. In this article, we focus on modeling mobile object trajectories in the context of Semantic Web. First, we introduce a new version of the Semantic Trajectory Episodes (STEP) ontology to represent generic spatiotemporal episodes. Then, we present FrameSTEP as a new framework for annotating semantic trajectories based on episodes. As a result, we combine our ontology, which can represent spatiotemporal phenomena at different levels of granularity, with annotation algorithms, which allow to create instances of our model. The proposed spatial annotation algorithm explores the Linked Open Data cloud and OpenStreetMap tags to find relevant types of spatial features in order to describe the environment where the trajectory took place. Our framework can guide the development of future expert systems in trajectory analysis. It enables reasoning about knowledge gathered from large trajectory data and linked datasets in order to create several intelligent services.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.