Abstract
Estimating frame-to-frame (F2F) visual odometry with monocular images has significant problems of propagated accumulated drift. We propose a learning-based approach for F2F monocular visual odometry estimation with novel and simple methods that consider the coherence of camera trajectories without any post-processing. The proposed network consists of two stages: initial estimation and error relaxation. In the first stage, the network learns disparity images to extract features and predicts relative camera pose between adjacent two frames through the attention, rotation, and translation networks. Then, loss functions are proposed in the error relaxation stage to reduce the local drift, increasing consistency under dynamic driving scenes. Moreover, our skip-ordering scheme shows the effectiveness of dealing with sequential data. Experiments with the KITTI benchmark dataset show that our proposed network outperforms other approaches with higher and more stable performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.