Abstract
The $X(6900)$ resonance, very recently discovered in the double-$J/\psi$ channel at LHCb experiment, has spurred intensive interest in unravelling the nature of the fully charmed tetraquark state. The aim of this paper is to present a model-independent theoretical framework to study the inclusive production of this novel species of exotic hadrons, the resonances composed of four heavy quark (commonly referred to as $T_{4c}$), at large $p_T$ in hadron collision experiments. Appealing to asymptotic freedom and the fact $m_c\gg \Lambda_{\rm QCD}$, we propose that the nonpertubative yet universal gluon-to-$T_{4c}$ fragmentation function, can be decomposed into the product of the perturbatively calculable short-distance coefficient and the long-distance NRQCD matrix elements. We compute the short-distance coefficient at lowest-order in $\alpha_s$ and velocity expansion. Adopting the diquark ansatz to roughly estimate those not-yet-known NRQCD matrix elements, together with the standard QCD factorization theorem, we predict the differential production rates for the $T_{4c/4b}(0^{++})$ and $T_{4c/4b}(2^{++})$ at large $p_T$ in $pp$ collision, which eagerly awaits the confrontation with the future LHC experiments.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have