Abstract
We report the effect of metal–ion adduction on the fragmentation of oligodeoxynucleotides (ODNs) bearing DNA photoproducts. When protons on backbone phosphates of ODNs are completely replaced with metal ions, cleavages occur readily within the photoproduct moiety, whereas those cleavages do not occur in photomodified ODNs in which the phosphates are associated with protons. For example, thymine/adenine (TA*) photoproducts revert to their undamaged precursors upon collisional activation, the pyrimidine(6-4)pyrimidone product and its Dewar valence isomer show a characteristic neutral loss of C 4H 3NO 3, and dimeric adenine photoproducts show a distinctive loss of NH 2CN from the adenine six-membered ring. The product–ion mass spectra of photodamaged ODNs that are adducted to metal ions are complementary in terms of structure information to those spectra of ODNs in which the phosphates are associated with protons. The results also demonstrate that the energy required for strand cleavages is higher for ODNs adducted with metal ions than that for ODNs bound with protons. Furthermore, the loss of a pyrimidine is more favorable than the loss of a purine in the fragmentation of ODNs associated with metal ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.