Abstract
This work presents the results of modeling the ion dynamics in the ART-MS (Autoresonant Trap Mass Spectrometry) device in the quasi-static approximation. This instrument utilizes an anharmonic, purely electrostatic trap for ion confinement and a radio frequency (RF) voltage source with decrementally varying frequency for selective ion extraction. The autoresonant interaction between the oscillatory motion of the ion and the RF voltage increases the amplitude of some confined ions, allowing their selective extraction. Numerical modeling shows that the extraction of ions with a given mass occurs not only at the fundamental frequency but also at its harmonics. This effect reduces the selective properties of devices of this type because along with the main mass component for a given frequency, it is possible to enter the detector channel of ions with another mass, for which this frequency corresponds to the second or higher harmonics, even a superposition of some of these harmonics of different ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.