Abstract

We have recently demonstrated that both electron capture dissociation (ECD) and electron detachment dissociation (EDD) can provide complementary sequence-specific cleavage of DNA compared with collision activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD). However, EDD is preferred because of more extensive fragmentation at higher sensitivity (due to its negative ion mode operation). Here, we extend the radical ion chemistry of these two gas-phase ion-electron reaction techniques to the characterization of RNA. Compared with DNA, rather limited information is currently available on the gas-phase fragmentation of RNA. We found that the ECD fragmentation patterns of the oligoribonucleotides A6, C6, and CGGGGC are nucleobase dependent, suggesting that cleavage proceeds following electron capture at the nucleobases. Only limited backbone cleavage was observed in ECD. EDD, on the other hand, provided complete sequence coverage for the RNAs A6, C6, G6, U6, CGGGGC, and GCAUAC. The EDD fragmentation patterns were different from those observed with CAD and IRMPD in that the dominant product ions correspond to d- and w-type ions rather than c- and y-type ions. The minimum differences between oligoribonucleotides suggest that EDD proceeds following direct electron detachment from the phosphate backbone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.