Abstract

At the mean-field level, on fully connected lattices, several disordered spin models have been shown to belong to the universality class of ``structural glasses'' with a ``random first-order transition'' (RFOT) characterized by a discontinuous jump of the order parameter and no latent heat. However, their behavior in finite dimensions is often drastically different, displaying either no glassiness at all or a conventional spin-glass transition. We clarify the physical reasons for this phenomenon and stress the unusual fragility of the RFOT to short-range fluctuations, associated, e.g., with the mere existence of a finite number of neighbors. Accordingly, the solution of fully connected models is only predictive in very high dimension, whereas despite being also mean-field in character, the Bethe approximation provides valuable information on the behavior of finite-dimensional systems. We suggest that before embarking on a full blown account of fluctuations on all scales through computer simulation or renormalization-group approach, models for structural glasses should first be tested for the effect of short-range fluctuations and we discuss ways to do it. Our results indicate that disordered spin models do not appear to pass the test and are therefore questionable models for investigating the glass transition in three dimensions. This also highlights how nontrivial is the first step of deriving an effective theory for the RFOT phenomenology from a rigorous integration over the short-range fluctuations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.