Abstract

The fracture and tensile behaviors of the AlSi10Mg alloy processed by Direct Energy Deposition were investigated. Three-point bending fracture toughness and tensile specimens were tested at room temperature along different crack plane orientations and loading directions. Before being machined and tested, the printed samples were subjected to heat treatment at 300 °C for 2 h to relieve the residual stresses. Microstructural and fractographic analyses were performed to investigate the fracture mechanisms and the crack propagation paths for each crack orientation. Significant differences in the fracture toughness were observed among the crack plane orientations. Specimens with cracks oriented in the X-Y direction featured the highest fracture toughness values (JIc = 11.96 kJ/m2), whereas the Z-Y crack orientation (perpendicular to the printing direction) performed the lowest fracture toughness values (JIc = 8.91 kJ/m2). The anisotropy in fracture toughness is mainly related to a preferential crack propagation path along the melt pool boundaries. At melt pool boundaries, pores are preferentially placed, coarsening of the microstructure occurs and there is higher Si content, leading to that area being less ductile and less resistant to crack propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.