Abstract
This paper presents a combination of the Boundary Element Method (BEM) and the cracked ring test to determine the mixed-mode (I–II) fracture toughness of anisotropic rocks. The proposed BEM is used to accurately calculate the Stress Intensity Factors (SIFs) of a cracked anisotropic plate. An anisotropic Hualien marble of Taiwan with a distinct foliation was selected to conduct the cracked ring tests. Based on the measurement of the failure load during the test, the mixed-mode (I–II) fracture toughness can be determined. Experimental results show that the radius ratio, inclination and crack angle significantly affect the fracture toughness. The mode-I fracture toughness (KIC) is shown to decrease with the increase in hole diameter, whereas the mode-II fracture toughness (KIIC) increases with the increase in hole diameter when the crack angle β is equal to 0°. The experimental methods proposed have the advantage that the material is easily prepared, the test procedure is simple, and the cost is low.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.