Abstract

The present study investigated the fracture strength of hybrid abutment crowns (HACs) in the premolar region that were fabricated with different restorative computer-aided design/computer-aided manufacturing (CAD/CAM) materials. The abutment-implant structures were randomly assigned into four groups (n=11 per group): bi-layered zirconia restorations (BL), translucent zirconia (4Y-PSZ) restorations (TZ), lithium disilicate ceramic restorations (LD), and dispersed nanoparticle-filled composite resin restorations (CM). All restorations were adhesively bonded to the titanium abutments. After the restoration-abutment complex was tightened onto the implant, the fracture strength was measured. The TZ (2.06 kN) and LD (1.87 kN) groups had significantly higher median fracture strengths than the BL (1.12 kN) and CM (1.10 kN) groups. In terms of fracture resistance, the 4Y-PSZ and lithium disilicate ceramic monolithic restorations would be superior to bi-layered 3Y-TZP and composite resin monolithic restorations for HACs in the premolar region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.