Abstract
We report an experimental study of the morphology of fractures in cohesive granular materials. Cohesion is introduced by equilibrating the grains with a humid atmosphere. The setup allows to produce a controlled crack in a thin layer of a glass beads assembly, and observe with an extremely high resolution the edge of the fracture at the free surface of the layer. The detailed multi-scale analysis of the fracture profile reveals the presence, in the bulk of the material, of clusters of grains whose size increases monotonically with the relative humidity. These results are important because the formation of clusters, resulting in a heterogeneity of the cohesion force, governs the mechanical properties of cohesive granular matter in contact with a humid atmosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.