Abstract

Particle-based moving bed heat exchangers are increasingly playing a significant role in industrial energy conservation and solar energy utilization. However, the moving bed heat exchanger used for cohesive granular materials still needs to be developed. This paper investigates the feasibility of indirect heat transfer of cohesive granular materials through a moving bed heat exchanger. A vibrating moving bed heat exchanger is developed for the metallurgical slag of vanadium-titanium (MSVT) from industry. The experiment demonstrates that the vibrating moving bed heat exchanger can establish an approximate mass flow regime of MSVT in the experimental section. The vibration device designed for the experimental and discharge section effectively resolves bridging and the intermittent collapse of arching in cohesive granular materials. The outer side of the tube is tightly wrapped by MSVT with vibration. Significant differences are observed in the flow and heat transfer behavior of MSVT between the aligned and staggered tubes. The local heat transfer coefficient at the top and bottom of the aligned tubes exhibits much lower sensitivity to flow velocity compared to the staggered tubes. The relationship between Nu−1 and Pe−0.5 or MSVT around the aligned and staggered tubes follows a linear correlation. Compared to aligned tubes, Nu−1 for MSVT in staggered tubes shows an average reduction of 28%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call