Abstract

Cryogenic fracturing, which uses liquid nitrogen (LN2) as a fracturing fluid, is a waterless fracturing method. However, previous attempts to investigate the fracture morphology of rocks after LN2 quenching have been mainly based on standard scanning electron microscopy (SEM) analysis at room temperature. This can be problematic since thermally-induced fractures created by temperature difference tend to close as a sample warms and thermal stress relaxes. To address this issue, we established a novel approach employing Cryo-scanning electron microscopy (Cryo-SEM) to investigate the fracture patterns induced by liquid nitrogen quenching under cryogenic conditions. This method can achieve in-situ visualization of fractures and pores with a nano-scale resolution at −190 °C. X-ray computed tomography (CT) is also employed to illustrate the fracture distribution inside samples. Cryo-SEM and standard SEM are compared, and statistical assessments are conducted to quantify fracture aperture size and closure scale. The results demonstrate that Cryo-SEM can more accurately preserve native fracture morphology and provide a more accurate means of evaluating fracture scales generated during LN2 quenching, particularly at higher temperature differences between rock and liquid nitrogen. Distinct fracture patterns and fracture width are observed for various rock types (i.e., coal, sandstone, shale, granite) by using these methods. More prominently, the maximum fracture width of coal, sandstone, shale and granite were 89.17 µm, 1.29 µm, 0.028 µm and 2.12 µm when the temperature difference between LN2 and rock samples were 296 °C. LN2 is shown to exhibit superior fracturing efficiency on coal and granite, characterized by complex fracture networks with branched fractures. This research contributes to our understanding of liquid nitrogen fracturing mechanisms and may offer effective approaches for unconventional reservoirs stimulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call