Abstract

Four sets of alkali-activated aluminosilicate (AAAS) composites based on ceramic precursors were studied in terms of their characterization by mechanical fracture parameters as a basis for considerations of durability. AAAS composites made of brick powder as a precursor and alkaline activator with various silicate moduli (Ms = 0.8, 1.0, 1.2, 1.4, and 1.6) were investigated. The sets of AAAS composites differed in terms of the used filler: quartz sand or brick rubble. Two different precursor particle size ranges of 0–1 mm and 0–0.3 mm were used for both types of filler. The test specimens had nominal dimensions of 40 × 40 × 160 mm and were provided with a notch at midspan after 28 days of hardening. The notches were cut up to 1/3 of the height of the specimens. The specimens were subjected to three-point bending fracture tests during which force vs. deflection (F–d) and force vs. crack mouth opening displacement (F–CMOD) diagrams were recorded. Tensile strength ft,ID and specific fracture energy GF,ID values were identified using the inverse method based on a neural network ensemble. The obtained F–CMOD diagrams were subsequently evaluated using the double-K fracture model supported by the ft,ID and GF,ID values. The double-K model allows the quantification of two different levels of crack propagation: initiation, which corresponds to the beginning of stable crack growth, and unstable crack propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.