Abstract

The paper deals with the approximation of the time evolution of the strengths of selected alkali-activated aluminosilicate (AAAS) composites based on ceramic precursors. Composites made of brick dust as a precursor and an alkaline activator with a silicate modulus of Ms = 0.8, 1.0, 1.2, 1.4, and 1.6 were investigated. The filler consisted of standard quartz sand in one case, and crushed brick in the other. The test specimens had nominal dimensions of 40 × 40 × 160 mm and were tested in three-point bending after 7, 28, 90, and 300 days of maturation. From each composite, 3 specimens were tested and the compressive strength was determined from the 6 specimen parts that remained after the bending tests. The obtained flexural and compressive strength values for the abovementioned 4 composite ages were approximated by the exponential function , where the coefficient a represents a horizontal asymptote to the approximation curve, i.e. the theoretical strength of the composite at time t = ∞; the exponential term of the approximation with the coefficients b and c expresses the degree of the time-dependent change of the respective compressive strength in the interval t = (0, ∞). The approximation was performed with the least squares method using genetic algorithms implemented in the Java GA package with open source code.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call