Abstract
We investigated propagation of a sharp crack in a thin metallic conductor with an edge crack due to electric current induced electromagnetic forces. Finite element method (FEM) simulations showed mode I crack opening in the edge-cracked conductor due to the aforementioned (i.e., self-induced) electromagnetic forces. Mode I stress intensity factor due to the self-induced electromagnetic forces, \(K_{\mathrm{IE},}\) was evaluated numerically as \(K_{\mathrm{IE}}=\upmu l^{2}j^{2}(\uppi a)^{0.5}f(a/w)\), where \(\upmu \) is the magnetic permeability, l is the length of the conductor, a is the crack length, j is the current density, w is the width of the sample and f(a / w) is a geometric factor. Effect of dynamic electric current loading on edge-cracked conductor, incorporating the effects of induced currents, was also studied numerically, and dynamic stress intensity factor, \(K_{\mathrm{IE,d}}\), was observed to vary as \(K_{\mathrm{IE,d}} \sim f_{d}(a/w)j^{2}(\uppi a)^{1.5}\). Consistent with the FEM simulation, experiments conducted using \(12\,\upmu \hbox {m}\) thick Al foil with an edge crack showed propagation of sharp crack due to the self-induced electromagnetic forces at pulsed current densities of \(\ge \) \(1.85\times 10^{9}\,\hbox {A/m}^{2}\) for \(a/w = 0.5\). Further, effects of current density, pulse-width and ambient temperature on the fracture behavior of the Al foil were observed experimentally and corroborated with FEM simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.