Abstract
Damage behavior of carbon fiber-reinforced plastic composite (CFRP) under the tensile loading was investigated. Four lay-up sequences were considered: [0o]4, [90o]4, [0o/90o]2, and [0o/45o/90o/-45o]. Experimental results showed that the specimen [0o]4 showed highest stiffness and strength followed by [0o/90o]2 , [0o/45o/90o/-45o], and [90o]4. The behavior was analyzed by finite element method. Progressive damage model Hashin’s damage initiation criteria and energy based damage evolution law were applied. It was shown that FEA results quite well agree with experimental results. The fracture strength was strongly dependent on the failure of the 0o directional ply.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have