Abstract

ABSTRACTThe behaviour of edge cracks under Mode I loading in the WC–Co material system is studied using the finite element method (FEM). This work focuses on ductile failure mechanisms in the Co binder. A micromechanical approach is taken whereby Co layers are modelled explicitly. An embedding technique is employed. Crystal plasticity theory and J2 flow theory are used to represent plastic deformation in Co ligaments. Areas of high hydrostatic stress, triaxiality and accumulated slip or effective plastic strain are identified within the binder material. The Gurson model is used to model crack growth in the Co ligaments. Fracture resistance curves are obtained giving a relationship between macroscopic material behaviour and microscopic failure mechanisms. Factors effecting the crack growth in single and multiple ligaments are identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.