Abstract
This paper deals with fracture mechanics in periodically perforated domains. Our aim is to provide a variational model for brittle porous media in the case of anti-planar elasticity.Given the perforated domain Ωε⊂ ℝN(ε being an internal scale representing the size of the periodically distributed perforations), we will consider a total energy of the type [Formula: see text] Here u is in SBV(Ωε) (the space of special functions of bounded variation), Suis the set of discontinuities of u, which is identified with a macroscopic crack in the porous medium Ωε, and [Formula: see text] stands for the (N - 1)-Hausdorff measure of the crack Su.We study the asymptotic behavior of the functionals [Formula: see text] in terms of Γ-convergence as ε → 0. As a first (nontrivial) step we show that the domain of any limit functional is SBV(Ω) despite the degeneracies introduced by the perforations. Then we provide explicit formula for the bulk and surface energy densities of the Γ-limit, representing in our model the effective elastic and brittle properties of the porous medium, respectively.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.