Abstract

To clarify the mechanism of aneurysmal recanalization, it is necessary to understand the characteristics of the blood flow inside the aneurysm in particular the flow resistance generated by the coil. In studies using computational fluid dynamics (CFD), mainly two approaches have been used to model the coil embolized aneurysm; modeling the coils as porous media or by real coil geometries. In this study, we calculated the pressure drop along a vessel through a coiled region modeled as porous media or by real coil geometry and compared the pressure drop generated by the two coil models. The porous media model was described by Darcy's law and Ergun's equation, while the real coil geometry was generated using finite element method (FEM) structural analysis. We calculated the pressure drop for inlet velocities from 0.1 m/s to 1.0 m/s in steps of 0.1 m/s. Our results indicated that the porous media model may produce larger pressure drops than the real coil geometry model under low packing density. The value of the pressure drop was also changed due to the difference of coil distribution even if the packing density was the same.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.