Abstract
Solder joint fatigue failure is a serious reliability concern in area array technologies, such as flip chip and ball grid array packages of integrated-circuit chips. The selection of different substrate materials could affect solder joint thermal fatigue life significantly. The reliability of solder joints in real flip chip assembly with both rigid and compliant substrates was evaluated by the accelerated temperature cycling test and thermal mechanical analysis. The mechanism of substrate flexibility on improving solder joint thermal fatigue lifetime was investigated by fracture mechanics methods. Two different methods (crack tip opening displacement, CTOD and virtual crack closure technique, VCCT) are used to determine the crack tip parameters which are considered as the indices of reliability of solder joints, including the strain energy release rate and phase angle for the different crack lengths and temperatures. It was found that the thermal fatigue lifetime of solder joints in flip chip on flex assembly (FCOF) was much longer than that of flip chip on rigid board assembly (FCOB). The flex substrates could dissipate energy that otherwise would be absorbed by solder joints, that is, substrate flexibility has a great effect on solder joint reliability and the reliability improvement was attributed to flex buckling or bending during thermal cycling.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have