Abstract

Purpose– Composite materials and metallic structures already compete for the next generation of single-aisle aircraft. Despite the good mechanical properties of composite materials metallic structures offer challenging properties and high cost effectiveness via the automation in manufacturing, especially when metallic structures will be welded. In this domain, metallic aircraft structures will require weight savings of approximately 20 per cent to increase the efficiency and reduce the CO2emission by the same amount. Laser beam welding of high-strength Al-Li alloy AA2198 represents a promising method of providing a breakthrough response to the challenges of lightweight design in aircraft applications. The key factor for the application of laser-welded AA2198 structures is the availability of reliable data for the assessment of their damage tolerance behaviour. The paper aims to discuss these issues.Design/methodology/approach– In the presented research, the mechanical properties concerning the quasi-static tensile and fracture toughness (R-curve) of laser beam-welded AA2198 butt joints are investigated. In the next step, a systematic analysis to clarify the deformation and fracture behaviour of the laser beam-welded AA2198 four-stringer panels is conducted.Findings– AA2198 offers better resistance against fracture than the well-known AA2024 alloy. It is possible to weld AA2198 with good results, and the welds also exhibit a higher fracture resistance than AA2024 base material (BM). Welded AA2198 four-stringer panels exhibit a residual strength behaviour superior to that of the flat BM panel.Originality/value– The present study is undertaken on the third-generation airframe-quality Al-Li alloy AA2198 with the main emphasis to investigate the mechanical fracture behaviour of AA2198 BMs, laser beam-welded joints and laser beam-welded integral structures. Studies investigating the damage tolerance of welded integral structures of Al-Li alloys are scarce.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.