Abstract

In a prior study, the current authors proposed the utilization of semi-circular bend (SCB) specimens for analyzing the fracture energy of adhesive materials. However, similar to standard fracture test specimens, the geometry and size of the joint can impact the measured fracture energy when using SCB samples. Therefore, the objective of this research is to investigate the influence of adhesive layer thickness, substrate thickness, and disk radius of SCB specimens on cohesive law parameters and fracture energy of the adhesive. The study examines the fracture energy under different loading conditions, including pure mode I, pure mode II, and two mixed-mode conditions. By employing an inverse data reduction method, the cohesive law parameters of the tested adhesive are determined for various joint geometries. The results demonstrate that the disk radius does not affect the cohesive law of the joint. Furthermore, it is observed that bondline thicknesses of 0.2 mm and 0.4 mm lead to similar cohesive laws, whereas an adhesive thickness of 1 mm results in lower initial stiffness but higher fracture energy and damage initiation traction. Moreover, the study reveals that an increase in substrate thickness reduces the final fracture separation, indicating a more brittle fracture behavior. This can be attributed to a smaller fracture process zone caused by the plane strain load distribution in the adhesive layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call