Abstract
Solid-state batteries (SSBs) with silicon anodes could enable improved safety and energy density compared to lithium-ion batteries. However, degradation arising from the massive volumetric changes of silicon anodes during cycling is not well understood in solid-state systems. Here, we use operando X-ray computed microtomography to reveal micro- to macro-scale chemo-mechanical degradation processes of silicon anodes in SSBs. Mud-type channel cracks driven by biaxial tensile stress form across the electrode during delithiation. We also find detrimental cracks at the silicon/solid electrolyte interface that form due to local reaction competition between neighboring domains of different sizes. Continuum phase-field damage modeling quantifies stress-driven channel cracking and shows that the lithiated silicon stress state is critical for determining the extent of interfacial fracture. This work reveals the mechanisms that govern SSBs compared to conventional lithium-ion batteries and provides guidelines for engineering chemo-mechanically resilient electrodes for high-energy batteries.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.