Abstract

Abstract This paper describes a new approach for fracture characterization by integrating all of the available data, geology, petrophysics, core analysis and production data. Our approach in fracture characterization produces normalized distributions for fracture presence and anisotropic connectivity. The normalized information is directly imported into the 3D flow simulator, where it can be scaled during sensitivity analyses. This fast approach enables the testing of the effect of the fracture indicators and their influence on the limits of fracture presence. In this paper, the successful applications of this fracture characterization technology to a complex fractured volatile oil reservoir with an aquifer (Sen Field, Mexico) and a fractured helium gas storage field (Bush Dome Reservoir, Texas) are presented. The results of these integrated studies are provided as proof of concept. Successful history match results obtained in a short period of time for these fields show the efficiency of the integrated fracture characterization technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.